What Could Possibly Go Wrong? The Process of Process Change

Barbara Kanegsberg and Ed Kanegsberg

BFK Solutions LLC

(310) 459-3614

info@bfksolutions.com

Surface Finishers Educational Association (SFEA) November 11, 2021

Surface Finishers Educational Association (SFEA)

- Serves all surface finishers
 - Electronics, circuit boards, automotive components & accessories, aerospace, hardware, household fixtures, other manufactured goods
- Non-profit
 - education
 - diverse exchange of ideas
- BFK Solutions SFEA involvement
 - Ed Kanegsberg, Media Chair
 - Barb Kanegsberg, Program Chair
- https://www.sfeasc.org

To Barbara's Parents – Veteran's Day

BFK Solutions

Critical Cleaning Consultants, est. 1994

- As the industry leaders, we provide
 - Process improvement, not product sales
 - Experience, expertise, common sense
 - Industry involvement: JS3 (military), IPC, ASTM, U.S. ISO expert, EPA, FDA
- Barbara Kanegsberg, "The Cleaning Lady"
 - Biochemist, clinical chemist, manufacturing process
- Ed Kanegsberg, *"The Rocket Scientist"*
 - Physicist, engineer, process evaluation

BFK Solutions Educational Resources

- "Clean Source" eNewsletter
 - Free; Sign up!
 - <u>https://bfksolutions.com/subscr</u> <u>ibe-to-clean-source-newsletter/</u>
- Product Quality Cleaning Workshops & Webinars (PQCW)
 - With Dr. Darren Williams, Sam Houston State University
- Editors, 2 volume, "Handbook for Critical Cleaning," CRC Press, 2nd edition, 2011

Always question authority - including BFK Solutions

- This presentation represents the views of BFK Solutions
 - We learn from our diverse clients
 - Product manufacturers
 - Providers of cleaning agents & equipment
 - Academic institutions
 - U.S. military
 - Regulatory agencies, including the U.S. EPA
- We make the best effort to provide accurate, up-to-date information
 - Information, especially quantitative information, is obtained from reliable references
 - It's always prudent to reconfirm all technical and regulatory information from the appropriate supplier or regulatory agency
 - SDS (MSDS)
 - Technical data sheet
 - Most recent requirement or regulation
- Presentation contains private and copyrighted material. May be distributed with prior permission of BFK Solutions, LLC

Overview: What Could Possibly Go Wrong? The Process of Process Change

- Dreaded words
- Scenarios and costs
- More lurking costs
- Update on EPA regulatory actions
- The process of process change successful critical cleaning

Dreaded words from the boss: "We have to change the process – take care of it in your spare time." Why? How soon?

- The process equipment is 40 years old and breaks down
- There's a PFAS issue
- Customers demand a lower defect rate
 - Or fewer particles, or lower thin film residue
- EPA TSCA may ban chlorinated or brominated solvents in a few years

- Corporate says we can't use our high pH aqueous cleaner
- We need higher throughput
- R&D has a new product; the current process won't work
- There is a supply chain bottleneck
- Our supplier is forced to alter process
- Etc., etc.

Our topic: changing the cleaning/surface prep process

- How difficult could it be?
- The obvious factors
 - Pick a cleaning agent
 - Pick a new cleaning machine
 - Voila!
 - Well

Overview: What Could Possibly Go Wrong? The Process of Process Change

- Dreaded words
- Scenarios and costs
- More lurking costs
- Update on EPA regulatory actions
- The process of process change successful critical cleaning

A Few Ideal Scenarios – costs other than equipment, chemicals

- Ideal
 - everything –
 - or almost everything goes right
- Scenarios are estimates
- These are NOT case studies

- Based on experience, observations, critical cleaning, surface prep
- Principles apply to ALL process change

BFK Solutions LLC

Labor, travel, testing costs (USD\$)

- Labor (hourly, burdened)
 - Senior Engineer, Manager \$125
 - Includes the company president
 - Technician \$75
 - Basis: assessment of online information, 2021
- Advisors (hourly)
 - \$250
 - Technical, legal, financial, safety
 - Estimate weighted toward safety advisors
- Travel (estimate)
 - \$750/day

- Testing, verification, approvals
 - Varies with product line, end-use requirements
 - Estimates obtained from
 - Project managers at test labs
 - Consultants (including BFK Solutions)

Tasks to achieve process change; they all cost \$\$

- Assemble cleaning team
- Team meetings
- Meet with advisors
- Meetings with customers
- Audit suppliers
- Explore cleaning options (websearch, talk to suppliers, webinars, etc.)
- Attend trade shows
- Obtain & review preliminary equipment costs
- Select, obtain & ship representative hardware samples for test
- Meetings with insurance carrier, fire department

- Independent lab cleanliness tests
- Evaluate results, preliminary cleanliness tests (supplier & independent)
- Review findings with upper management
- Address management concerns
- Fine tune equipment and process design
- Site visit at equipment supplier
- Arrange for needed facilities changes
- Address local regulatory issues
- Set up and on-site performance test for new equipment
- Train employees

Do NOT roll your eyes at me!!! A team is a good thing

Process team

- An effective team saves time
- Essential: Upper management support and involvement
- Essential: Buy-in, support from assemblers, techs, operators
- Begin with the end in mind e.g. how clean is clean enough?
- Communicate
- Coordinate!

Put together the process change team!

- A team leader you, perhaps
- Upper Management
- Assemblers/technicians/operators
- Design engineers
- Key supervisors
- Technical advisors
- Quality Control professionals
- Facilities/maintenance personnel
- Safety/environmental professionals
 - In-house or contracted

- Regulatory experts
 - Eg. FDA, NADCAP, Military
- Supply chain
 - Contract manufacturers
 - Customers
- Regulatory agencies
 - Safety, environmental, performance

Ideal Development scenario 1 – General Cleaning

- Moving from a halogenated solvent to an aqueous parts washer; or simply moving from an old aqueous parts washer to a new design
- Primary labor cost: Performance test
- Low cost:
 - Process development
 - Process verification
- No travel, no outside lab costs
- Assumption: they get it right the first time

Ideal Scenario 1, General Cleaning, new aqueous: \$37,050

Item	Labor hours	Cost USD\$	Comments
Assemble cleaning team	4	. 500	engineer
Team meetings	8	2600	3 people: 2 engineer., 1 technician
Meet with advisors	0	C)
Meetings with customers	6	750	virtual
Audit suppliers	0	c	
Explore cleaning options (web-search, talk to suppliers,			
webinars, etc.)	32	4000	engineer
Attend trade shows	32	7000	engineer
Obtain & review preliminary equipment costs	20	2500	engineer
Select, obtain & ship representative hardware samples for			
test	20	4000	engineer +technician
Meetings with insurance carrier, fire department	4	500	engineer
Independent lab cleanliness tests		C	
Evaluate results, preliminary cleanliness tests (supplier &			
independent)	4	-	engineer
Review findings with upper management	2	500	engineer + manager
Address management concerns	4	. 500	engineer
Fine tune equipment and process design	20	4000	engineer +technician
Site visit at equipment supplier	0	C	
Arrange for needed facilities changes	4	. 1000	2 Engineers
Address local regulatory issues	8	1000	engineer
Set up and on-site performance test for new equipment	20	5500	engineer+ 2 technician
Train employees	8	2200	engineer+ 2 technician

- Ideal Scenario 2:General Cleaning, Switch from Halogenated Solvent to Non-Aqueous Process
- Move from a halogenated solvent to a solvent-based process
 - Assume a flammable solvent
- More labor, advisory costs. need to gain familiarity with cleaning equipment & process options
- Medium cost
 - process development
 - Process verification
- No travel, no outside lab costs a very optimistic assumption!
- Assumption: they get it right the first time
- Remember: This is in addition to equipment and chemical costs

Ideal development scenario 2:General Cleaning, Switch from Halogenated Solvent to Non-Aqueous Process **\$86,150**

T.	Labor		Cost	
Item	Hours		USD\$	Comments
Assemble cleaning team		4	500	engineer
Team meetings		8	2600	3 people: 2 engineers., 1 technician
Meet with advisors		8	3000	engineer+ advisor
Meetings with customers		6	750	virtual
Audit suppliers		0	0	
Preliminary but unsuccessful exploration of aqueous solution		80	26000	3 people: 2 engineers., 1 technician
Explore cleaning options (web, talk to suppliers, webinars, etc.)		80	10000	engineer
Attend trade shows		32	7000	engineer
Obtain & review preliminary equipment costs		20	2500	engineer
Select, obtain & ship representative hardware samples for				
test		30	6000	engineer +technician
Meetings with insurance carrier, fire department		8	1000	engineer
Independent lab cleanliness tests			0	
Evaluate results, preliminary cleanliness tests (supplier & independent)		4	500	engineer
Review findings with upper management		4	1000	engineer + manager
Address management concerns		8		engineer
Fine tune equipment and process design		40	8000	engineer +technician
Site visit at equipment supplier		0	0	
Arrange for needed facilities changes		4		2 engineers
Address local regulatory issues		8	1000	engineer
Set up and on-site performance test for new equipment		40		engineer+ 2 technician
Train employees		12	3300	engineer+ 2 technician

Ideal Scenario 3: High Precision

- Move from halogenated solvent to low flashpoint solvent
- Regulatory/permitting issues
- Manufacturer understands processes of upstream supply chain
 - Including soils and cleaning processes
- Manufacturer understands how clean is clean enough
- Customer has specific cleanliness expectations
 - Communicates those expectations clearly

Ideal Scenario 3: Costs High Precision Product: \$95,900

	Labor hours	Co US		Comments
Assemble cleaning team		8	1000	engineer
Team meetings		8		6 people: 4 engineers, 2 technician
Meet with advisors		8	3000	engineer+ advisor
Meetings with customers		8		virtual
Audit suppliers	8	0		engineer (2 day each, including travel x 5)
Explore cleaning options (web, talk to suppliers, webinars,				
etc.)	6	0	7500	engineer
Attend trade shows	3	2	7000	engineer
Obtain & review preliminary equipment costs		0	-	engineer
Select, obtain & ship representative hardware samples for test	6	0	12000	engineer +technician
Meetings with insurance carrier, fire department		4	500	engineer
Independent lab cleanliness tests			4000	
Evaluate results, preliminary cleanliness tests (supplier & independent)		8	1000	engineer
Review findings with upper management		2	500	engineer + manager
Address management concerns		8	1000	engineer
Fine tune equipment and process design	4	0	8000	engineer +technician
Site visit at equipment supplier	1	6	3500	engineer
Arrange for needed facilities changes		4	1000	2 engineers
Address local regulatory issues		8	1000	engineer
Set up and on-site performance test for new equipment	6	0	16500	engineer+ 2 technician
Train employees		8	2200	engineer+ 2 technician

Ideal development scenario 4: Safety/Critical Medical Device

- Safety/Critical Cleaning
 - Failure is not an option
 - Implantable medical devices, some military, advanced automotive, aeronautics
- Evaluating a low flashpoint solvent in a new cleaning process
- Significant effort for preliminary performance testing and cleaning validation
- Remember: Equipment & cleaning agent costs are excluded

Ideal Scenario 4: Safety/Critical Medical Device (Hilarious Assumptions)

- Everything goes right the first time
- The final fabricator and key suppliers work seamlessly and harmoniously
- No false starts
- No mistakes (they choose the right equipment, the right cleaning agent, the right process)
- Management has no second thoughts
- The FDA is **deliriously happy** and has no comments or reservations

Ideal Scenario 4: cleaning process development costs: one implantable medical device - **\$275,500**

	Labor	Cost	
Item	hours	USD\$	Comments
Assemble cleaning team		-	oengineer
Team meetings]		o8 people: 6 engineers., 2 technicians
Meet with advisors	3		oengineer+ advisor
Meetings with customers	1	2 150	ovirtual
Audit suppliers			engineer (2 day each, including travel x
	12	,	2.
Explore cleaning options (web-search, talk to supplier, webinars, etc.)			oengineer
Attend trade shows	-		oengineer
Obtain & review preliminary equipment costs			oengineer
Select, obtain & ship representative hardware samples for test	8		oengineer +technician
Meetings with insurance carrier, fire department			oengineer
Independent lab cleanliness tests (including pre-validation)		800	0
Evaluate results, preliminary cleanliness tests (supplier &			
independent)	2		oengineer
Review findings with upper management			oengineer + manager
Address management concerns			oengineer
Fine tune equipment and process design	8		oengineer +technician
Site visit at equipment supplier	2		oengineer
Arrange for needed facilities changes		-	o 2 engineers
Address local regulatory issues			oengineer
Set up and on-site performance test for new equipment	6	-	oengineer+ 2 technician
Process validation labor	12	-	oengineer
Process validation outside costs		10000	o testing for 1 device
Address FDA Concerns (assumes no re-test needed, just			
documentation)	2		02 Engineers
Train employees	2	4 660	oengineer+ 2 technician

Comments about cost estimates

- This is when everything goes RIGHT!
- Scenarios 1 to 4 are highly idealized and optimistic
- Costs, even for well- planned projects, can be much higher
- Activities cost time and money
 - Meetings
 - Talking to cleaning agent and equipment suppliers
 - Going to conferences (even virtual conferences)
 - Arguing
 - Not understanding cleanliness requirements or production expectations

Summary, ideal scenarios

- The process of process change costs \$\$\$
 - Excluding process chemicals and equipment
- General Cleaning, Aqueous: \$37,050
- General Cleaning, flammable non-aqueous: \$86,150
- High Precision Cleaning: \$95,900
- Safety/Critical Cleaning: \$275,500
- These are ideal conditions get it right the first time
- Usually, conditions aren't ideal

What can go wrong if we take shortcuts?

Let's revisit Scenario #3 High Precision Cleaning – with "money saving" short cuts

- Company president says
 - "I just played golf with the Vice President of Marketing at 'Wham-0-clean."
 - "Wham-O-Clean XL equipment costs \$250,000 less than what you were thinking about "
 - "The Rep guarantees it will clean all the soils our customer is worried about."
 - "The Rep says that in last 12 months there have been 200 new 'Wham-0-clean XL' installations across the U.S. They all work perfectly."

Short cuts – the boss orders you to

- Don't bother with a cleaning team
- No advisors we can do it all!
- Don't bother about regulatory stuff
- Don't worry about talking to the customer; we know what our customer needs
- Don't competitive bid
- Don't bother with cleaning tests

Ideal Development Scenario 3: High Precision Product **\$95,900** (Excluding equipment and chemicals) – no shortcuts

Item	Labor hours	Cos USI		Comments
Assemble cleaning team		8	1000	engineer
Team meetings		8	5200	6 people: 4 engineers, 2 technician
Meet with advisors		8	3000	engineer+ advisor
Meetings with customers		8	1000	virtual
Audit suppliers	8	30		engineer (2 day each, including travel x 5)
Explore cleaning options (web, talk to suppliers, webinars, etc.)	(δο	7500	engineer
Attend trade shows	-	32	7000	engineer
Obtain & review preliminary equipment costs	2	20	2500	engineer
Select, obtain & ship representative hardware samples for				
test	e	50	12000	engineer +technician
Meetings with insurance carrier, fire department		4	500	engineer
Independent lab cleanliness tests			4000	
Evaluate results, preliminary cleanliness tests (supplier &				
independent)		8		engineer
Review findings with upper management		2		engineer + manager
Address management concerns		8		engineer
Fine tune equipment and process design	2	10	8000	engineer +technician
Site visit at equipment supplier		16	3500	engineer
Arrange for needed facilities changes		4	10002	2 engineers
Address local regulatory issues		8		engineer
Set up and on-site performance test for new equipment	(50		engineer+ 2 technician
Train employees		8	2200	engineer+ 2 technician

Scenario #3 (High Precision) with shortcuts: \$20,700 ~80% Cost Reduction

	Labor	Cost		
High Precision cleaning development tasks	hours	USD\$	Comments	
Assemble cleaning team (smaller team)	:	2 250	engineer	
Team meetings (few meetings)	4	4 1000	2 Sr engineer.	
Meet with advisors (don't need advisors)	(o c)	
Meetings with customers (assume you know what they need)	4	4 500	virtual	
Audit suppliers (sole source so don't bother)	() ()	
Explore cleaning options (web-search, talk to vendors,				
webinars, etc.)	8	3 1000	engineer	
Attend trade shows (Your mind is made up already)	() (
Obtain & review preliminary equipment costs (sole source)	10	1250	engineer	
Select, obtain & ship representative hardware samples for test				
at vendor	() (
Meetings with insurance carrier, fire department	() (
Independent lab cleanliness tests (perfunctory test)		4000)	
Evaluate results, preliminary cleanliness tests (vendor &				
independent)	4	1 500	engineer	
Review findings with upper management	:	2 500	engineer + manager	
Address management concerns	() C		
Fine tune equipment and process design	20	4000	engineer +technician	
Site visit at equipment vendor	() C		
Arrange for needed facilities changes	() (
Address local regulatory issues	(o c)	
Set up and on-site performance test for new equipment	20	5500	engineer+ 2 technician	$^{\circ}\mathbf{V}$
Train employees	8	3 2200	engineer+ 2 technician	39,10
			BFK Solution	ILC IS IN THE REPORT

Consequences of short cuts

- Short cuts might work
 - 80% cost reduction
 - Everything works beautifully
 - The customer is happy
- Short cuts backfire (this is far more likely)
 - Start over: More time, more money
 - Lost business
 - Forced to make last minute, "emergency" decision
 - Still may not be ideal
 - Even more \$\$\$

Costs of shortcuts – high precision

- Ideal: \$95,900
- Short-cuts: \$20,700
- Recovering from shortcuts: \$213,350
 - Instead of Saving 80% of "ideal", wind up spending 223%
 - And wasting a lot of valuable time and reputation

Development scenario #3 (High Precision) with consequences of shortcuts Costs more money, lots of time: \$192,650 + \$20,700 (1st shortcut attempt); total = **\$213,350** (Excludes equipment and chemicals)

	Labor	Cost	Common to
High Precision cleaning development tasks	hours	USD\$	Comments
Assemble crisis cleaning team (more people, more time)	1	6 2000	bengineer
Team meetings (crisis team)	4	0 46000	10 people (8 engineers, 2 0 technicians)
Meet with advisors (emergency meetings, 2 advisors)	4	0 25000	engineer+ advisors
Meetings with customers (calm customers down)	2.	4 3000	ovirtual
Audit suppliers (search for and audit new suppliers)	8	0 17500	engineer (2 day each, including otravel x 5)
Explore cleaning options (web-search, talk to vendors, webinars, etc.)	1	6 2000	Dengineer
Attend trade shows (no current trade show, frantic phone calls to suppliers)	4	0 8750	Dengineer
Obtain & review preliminary equipment costs	4	0 5000	bengineer
Select, obtain & ship representative hardware samples for test at vendor	6	0 12000	engineer +technician
Meetings with insurance carrier, fire department		8 1000	Dengineer
Independent lab cleanliness tests		12000)
Evaluate results, preliminary cleanliness tests (vendor & independent)	1	2 1500	Dengineer
Review findings with management (management is more concerned)	1	2 3000	oengineer + manager
Address management concerns	3	2 4000	engineer
Fine tune equipment and process design	4	0 13000	2 engineer +technician
Site visit at equipment vendor	1	6 3500	engineer
Arrange for needed facilities changes (last minute changes cost more)	20	5000	22 Engineers
Address local regulatory issues	2		Dengineer
Set up and on-site performance test for new equipment	8		engineer+ 2 technician
Train employees	1		engineer+ 2 technician

Metal Finishing – attempts to replace solvent degreasing

- Mixed substrates
 - Stainless steel, carbon steel, copper, brass, assorted aluminum alloys
- Anodizing, plating, powder coating
- General industrial, automotive, medical
- Pinch point: Removal of heavy oils and polishing compounds
 - Current: degrease in n-propyl bromide (nPB)
 - EPA may restrict or ban nPB

Issues: money and time for testing

- Limited testing, highly alkaline aqueous cleaner
 - By cleaning agent supplier
- Rejected relatively sophisticated system (costs)
 - Immersion, agitation, ultrasonics, multiple rinse
 - No dry
 - Limited testing by equipment supplier
- "Short cut" single-tank ultrasonic system
 - Immersion, ultrasonics
 - No rinse, no dry

Rinse? Water quality? – proposed short cuts

- Initial rinse in hot tap water
- Considered rinsing high pH aqueous degreaser using existing rinse tanks in existing plating line
- Use tap water at all steps
 - Water quality judged excellent

"Bargain" process has not been tested or adopted - What might go wrong?

- Degreasing mixed metals in aqueous is challenging
 - Materials compatibility problems with different cleaning agents
 - Galvanic effects
- Aluminum is a pain in the posterior
 - Alloys behave differently
- Using rinse tanks for more than one purpose is ill-advised
 - Soils in the rinse tank can make a huge mess
 - Cleaning agents, polishing compounds, lubricants
- Process water must be defined, controlled
 - Tap water- variable

Short-cuts – bad for business

- Don't bother with a cleaning team or advisors
 - Poor, uncoordinated decisions
- Don't bother about regulatory stuff
 - Shutdown, process delay, fines, imprisonment
- Don't worry about talking to the customer; we know what our customer needs
 - Irate customers, lost business
 - The competition wins!

Short-cuts – bad for business

- Don't competitive bid
 - Poor quality process equipment
 - Pay too much
 - The wrong equipment for the job
 - Poor customer support
- Don't bother with cleaning tests
 - The process fails

Overview: What Could Possibly Go Wrong? The Process of Process Change

- Dreaded words
- Scenarios and costs
- More lurking costs
- Update on EPA regulatory actions
- The process of process change successful critical cleaning

Effective cleaning equipment is not cheap

- Secret to "bargain" cleaning
 - Purchase quality equipment
- Budget for peripherals
 - Filtration
 - Recycling
 - Closed-loop
 - Fixtures

Production flow; sizing the equipment

- Product throughput
 - Total parts per day
- Average process rate/day
- Maximum required process rate avoid bottlenecks
- Production peaks, valleys
- Eliminate techniques which do not meet your process flow requirements
- Ask equipment providers to help with equipment sizing
 - Check the math!
 - Assume some "wiggle room"
 - Process glitches
 - Down time
- Size equipment with some room for growth
- Check workspace dimensions (will equipment fit?)
 - Including ceilings!

Productive Equipment Purchases

- Don't cut corners
- Get it in writing!
 - Design parameters
 - Performance
 - Delivery time
 - Installation
 - Initial training
 - Product support
- If they don't deliver, don't pay!

Examples: better supplier support needed

- Aerospace company did not use supplier with PERTINENT experience
 - Good vendor, not experienced with equipment design
 - \$300K+ poured in to "bottomless pit"
- Supplier said "don't worry"
 - Requirements & product support not adequately specified in writing
 - Equipment leaked
 - Parts manufacturer had to do trouble-shooting
- Manufacturer had guarantee in writing
 - Plasma Technology Inc. (PTI)
 - Equipment not built optimally
 - PTI had ammunition to get equipment fixed

Manage the supply chain

- Make cleaning process a collaborative decision
- Specify cleaning in the contract
 - Immediate cleaning
 - Make sure suppliers use a cleaning process that works
- Audit periodically
- Cheap, generic suppliers may cost more in the long run
- Are you part of the supply chain?
 - Become the solution, not the problem
 - Tactfully educate your customers

Partner with your suppliers

- Select intelligent, collaborative suppliers
- Auditing not always feasible
 - Secrecy, intellectual property
 - Limited choices in certain specialized suppliers
- Imposing your cleaning process on them doesn't work
- Include consistent cleaning processes in the contract
 - Get the process cast in concrete
 - Require that they inform you prior to changing the cleaning process

Overview: What Could Possibly Go Wrong? The Process of Process Change

- Dreaded words
- Scenarios and costs
- More lurking costs
- Update on EPA regulatory actions
- The process of process change successful critical cleaning

TSCA Will solvents be banned?

TSCA may result in drama but it's not an opera!

©2021 BFK Solutions

EPA TSCA reform

https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/how-epa-evaluates-safety-existing-chemicals

- U.S. Environmental Protection Agency
 - United States, not just California
- EPA Toxic Substances Control Act (TSCA)
- Sweeping authority environmental and worker safety (like OSHA)

EPA Risk evaluations completed Halogenated cleaning solvents – possible solvent bans

Chemical name	Status	Date posted
1-BP (nPB)	Final risk evaluation	August 2020
Methylene chloride (MC)	Final risk evaluation	June 2020
Perchloroethylene (PCE)	Final risk evaluation	December 2020
Trichlorethylene (TCE)	Final risk evaluation	November 2020

©2021 BFK Solutions

Why is BFK Solutions concerned with EPA TSCA?

- EPA actions can impact our clients in the manufacturing community
 - Cleaning agents, cleaning equipment, costs, evaluation, performance, etc.
- We are a subcontractor to the EPA
 - Provide technical information, risk management
 - Evaluate risks/benefits of alternative chemicals & processes
 - We are NOT involved in risk assessment for chemicals under review

©2021 BFK Solutions

EPA Rules? Timelines?

- Ban manufacture, sale or use?
 - Who knows?
 - What if only PCE were allowed ; only in airless cleaning systems (\$100K -\$1Million+)
- Rules for MC, PCE, TCE, nPB by the end of 2023
- Probably a timeline, not a sudden "cutoff"
- What's left? Trans-DCE – also under EPA review!

Product manufacturers may move to flammable solvents

- Why manufacturers may change cleaning process from halogenated solvent to low flashpoint solvent
 - National (Federal EPA, EU), local local regulatory, corporate/customer policy
 - Aqueous, trans-DCE not always the right choice for the situation
- Manufacturers may move to acetone not a VOC (ROC)
- Insurance impact: Usually costs went up (anecdotal accounts)
 - Insurance costs increased
 - Costly facilities changes required
 - Insurance not available
 - One coater: insurance obtained for cleaning process using acetone in cold dip tanks followed by high temperature metalizing
 - OUR STANCE: DO NOT USE ACETONE NEAR AN IGNITION SOURCE!!!

Insurance costs may increase for flammables

- Insurance magical mystery tour!
- Resources
 - E&O, liability agent
 - Trial attorney
- Flammable versus carcinogen?
 - Flammable immediate dramatic & long-term effect

Successful cleaning process change without breaking the bank

Coordinate

Communicate

LINEAR, STOVE-PIPE APPROACH

- Trip to marble yard, 2002
 - Major remodel
 - Barb brought samples of tile, wood, hardware
- Engineer saw Barb became agitated
 - "You must hide! My wife can't see you."
 - "I want to pick the tile, then the wood, then the hardware"
 - "She will want to coordinate!"
- Engineer's wife, traditional sari, saw Barb with samples

IN THE SAFFRON SARI – WE MUST COORDINATE

- She's right successful process change
- Manufacturing, assembly
- Costs
- Quality
- Safety
- Environmental

Communicate – this means you!

- Supporting information
 - Brochures
 - Cleaning studies
 - Lab results
 - PowerPoint presentations
 - Excel spreadsheets
- Supporting information is not enough!
- Communicate in simple, short sentences
 - Noun, verb, punctuation
 - Appropriate qualifying words

Minimize costs – plan for the unexpected

- Good, educated cleaning team
 - Strong management backing
 - Correct players at the table
 - Including the techs
 - Including advisors
- Solid

education/understanding

- Cleaning options
- What you need for your application
- Process selection plan
 - Chemicals & equipment
- Process validation plan
- Have a backup plan (or two)

Questions?

- Barbara "The Cleaning Lady"
 - <u>barbara@bfksolutions.com</u>
 - Office 310-459-3614
 - Mobile 310-344-2061
- Ed "The Rocket Scientist
 - <a>ed@bfksolutions.com
 - Office 310-459-3614
 - Mobile 310-614-7111
- Clean Source Newsletter
 - https://bfksolutions.com/subscribe -to-clean-source-newsletter/

